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PREFACE

In processes involving analog machines, digital

machines, or a combination of these, the accuate trans-

missiOn of information is, of great importance., This is,

sometimes alded by the application of independent quanitizer

activators called dithe rs. 'The present Memorandum, written

by a RAND Cororation consultant., analyzes questions

concerning dithers and gives some quantitative evaluations

regarding them.

The author expresses thanks to, Professor Charles

Sugskind, who read the manuscript and made, editorial

suggestions.



SUMMRY

This, Memorand treats the linearization of the

highly imortat multlstep quantizer nonlinearity by the

application of' independent quantizer activators called

dithers, For the dithered quantizer -aeting '(as it often

does) in conjunction with a l aow-pass or, band-pass filter,

iumerical answers are given for the first time to, the

questions: (a) What is the equivalent quantizer, gain?

(b) What upper bounds does the ,dither place upon, the
maximum deviation from linearity? (c) How does one

determine, for given, specifications, a dither amplitude

so that the system is optimally dithered? Such informa-
tion, with regard to two time-periodic diters (the

sinusoid and sawtooth); makes it possible to ef fect analog-

to-digital-to-analog conversion (to, name one application)

with no apparent loss of informtion even when the quanti-

zation is. rough. The properties of the sinusoidal and

sawtooth waves as quantizer linearizers are developed in

detail; it is shown that the sawtooth is superior to, the

more popular sinusoid in most important respects.
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REMOVING THE NOISE FROM TH HE QUA NTIZATION
PROCESS BY DITHEFRING LINEARIZATION

1. INTRODUCTION

The opearation, of Amiplitude quantiza tion, which

transforms continuos -ampi tude variables into, variables

whose amplitudez can have only discrete level s,, is being

incorporated in a growing number of control a:nd computer

processes. in general any periodic quantizatio" type of

nonrlinearity can be represented by the staircase,

chartaoteristio of Figi 1 ; but the ordinary roundinig~off

process, whichi this ,papger t, reqjuires that the

quantizer characteristie be made Square and symetrical,

i ie, with quanjta s8ize q -t th and bias, h V 0

In the present paper., Such r6ounding-off transducers '(for

example, those that round off to the nearest integer, ,with

q 1 ) will simply be called "quantizers," and their

presence will be indicated by the symbol Q, Note tha tit

is possible to transform the quantizer nonlinearity into

the more general nonlinearity of Fig. 1 if the linear

operations of summation and pure amplification are allowed

both, to precede and to follow the quantization operation

itself [i, 2]. Therefore the results obtained here can be

readily extended to other staircase honlinearities.

,Although it is evident that digital computers -must

entail amplitude quantization, many other nonlinear processes

that are apparently unrelated to quantization are in fact
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reducible to processes' that are linear except for a quanttizer.,

For example, a pulse frequency modulat o , which emits

identical narrow pulsers at a rate proportional to its

Input, is equivalent to a transducer that subjects it's

Input to integration, quantization, and differentiation,

in, that order.

Amplitude quantization is now a popular means of

preserving signal accuracy in the face of transmission

noise. Moreover, the use of digital computers in otherwise

nonquantizing systems is growing With the versatility and

sophistication of the omputer sciences [3].

The sti ulation of' such quantizing systfems by

externally generated signals (dithers) holds great promise

([ as a means of doing away wi th the two main disadvantages.

of quantization: (a): the information loss inherent in the
rounding-off process, and (b) the possibility of imicycle

oscillation. At the same time the advantages of digital

omputation and disgital data transmission can be fully

explo ited.

The idea of linearizing highly nonlinear transducers.

by means of an externally generated signal is not a new

one, McColl [41, and Lozier 1[5], both recommend that a

sinusoidal dither be applied to a motor drive system

incorporating a relay, and Loeb (6] has suggested that

any nonlinear system can be linearized in this manner.

Other workers have been concerned with the problems of



stability ;[7)] and noise in apitude-quantizing sampled-data

systems [8, 9]. Although the effects of dither on system

lifnearization have been d'escribed q uantitatively for a

number of nonldinearities, for the qu.,'antizer they are here

described, for the first tiime. Some of the 'effects of dither

on the quantizer as ;an, operator on the statititical properties

,of it-s inputs (such as their mean square) have been

reported 1, 2, and 10). Such information is importAnt

for other reasons, but it leaves the question of linearity

open.

2. PROBLM FORMULATION

We now fommlate the presen-tL problem, as schematized

in Fig. 2.

A. he ollwig inomtn is given:

a. Transfer functions A and C may be linear or

nonlinear, and sampled data or time continuous, but they

are otherwise unspecified. Hence we may have A = 1, C = 0.

b. Transfer function B Is linear and has either a

low-pass or band-pass frequency characteristic. Also, if

B is sampled data., the sampling rate is high relative to
the frequencies of O (t), so that for purposes of analysis

B may be approximated by a continuous transfer function.

,c. The dither may be injected at the q.uantizer

input (as in Fig,. 2) or, if that is not possible and A is

linear, at the system input.
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d. The notation Is:
iq (t= nondither quantizer inpu t,

dq (t)' injected ,dither,

iqI(t) t otal quanit1z.r, Input = iq ,(t) + dq,(0.9
.(t) quantzer-outpUt = iq(t) rounded off tol

the nearest quantum.

B. The designer is to select a dither type So that with,

regard to its input-output relationship the dithe.red

system behaves ash i.f the dither were not present

(ie., as if dq(t) = 0) and the quantizer had a pure gain

of unity. The quantizer is then said to be linearized

C . The designer works under the following restrictions:

a. The instrumentation for a dither source should not

appreciably increase the complexity of the system..

b. Even though it is sometimes advantageous from a
theoqretical viewpoint to employ dither amp li tude-s that

range over many quana, for reasons of economy the

designer must not allow the dither to increase the dynamic

range of the quantizer, appreciably.

Expressed in other terms,, any difference between the

quantizer input and output is undesirable in the sense that

it can repre-sent an information loss. For this reason it

is. called a "Irounding-off error" or "quantization noise"

nq(t) (11), with nq (t) = Oq(t) - iq(t), The maximum

magnitudes of nq occur for values of iq which are halfway

between adjacent quanta levels. Hence, we have -q/2 < nq < q/2.



Dither,, when used effectively, does, not cause nc- to, vanish..

Rather, high-frequency dither is employed to drive the

noise-frequency spectrum to regions where, the noise 'is,

absorbed by B together with the dither. That is, of the

total .quantizer output o = i '+ d n, only the first
q q ;q fq,

term appears i(as a result of its lying within the passband

of B),at the system output in appreciable magniudes..

We shall comment -only in passing on the eradication

of the bounded periodic oscillations or limit cycles to

which quantizing systems are subject, merely to say that

these os-cillations are brought under ,ontrol at the same

time that the linearity of the quantizer is, improved by

dithering, The problem of controlling the amplitude and

frequency of such limit cycles by means of dither :(often

referred to as signal stabilization) has received

considerable attention since the publication of Oldenburger's

exploratory paper [121.

The usefulness of a random dither having a Gaussian

probability density [2, 13] as well as that of a sinusoidal

dither 14, 15] in bringing limit cycles under control has

been investigated. A means of controlling limit-cycle

amplitudes by the manipulation of gain parameters within

the loop has also been worked out [16]., Only one of these

studies [23 treats the multistep quantizer, which is our

present concern, but they do consider a switch or limiter

nonlinear-ity, which is precisely what the multistep non-



linearity is reduced to when the system, operates in a

low-amplitude limit-cycle mode.

Before discussing the actiodn of dither, we shall

indicate why other methods olf quantizer linearizat on may

be less attractive.

Suppose, for example, that one wishes to reduee a

maximum round-off error from 0.,5 to O.1 units wthout

recourse tol dither. This requires that q - 1 is replaced

by q = 0.2 unitsi Sueh a change is equivalent to

subjecting i q.(t) to, an amplification of 5, and oq(t) to-an
qjaitn q ; q 1 s t

amplification o 1/5; q = 1 is retained. It is evi dent

that the dynamic range of the quantizer has been increased

five fold, requiring a greater Tcapacity Should a new

quantizer with q 0.2 units be available, it will

certainly be more complex than the original one. Of c.ourse
sch an exchange of quantizers may be physically impossible

in the first place because the operation of qu ttization

may not be carried out in a separate component; it has
been isolated in the schematic only for the purposes of

analysis. Moreover, regardless of how small q is made, the

quantizer continues to exhibit an inactive region or dead
zone for -q/2 <i' i < q/2.

q iq q2

On the other hand, it is possible to achieve perfect

linearization economically by employing a certain low-

amplitude dither, as we shall demonstrate.
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3. DIT IMR TY'PE'S

in the past, the teirm "',dither"' has become almst

synonomous with "sinusoidal dither"', sio, popular was this

wave type as a iinearizer. More recently a periodic,

zero-average sawtooth dither, has been reommende-d [1].

Moreover, it has been, suggested [2] that a random, dither

such as a -Gaussian one may be suitable for, linearizing

the quantizer. Even, if the Gaussian, dither should be

subjected to preeliminary linear, high-pass filtering,

however, there is at best a nonunity probability that the

dither will produce acceptable ionearizatio., Aso, there

is a need of overdesigning to compensate for the relatively

high probability of the dither ampljtude being in the

ne ighb orlh.ood of Zero. The Gaussian dither does, howeve,,

posess certain properties that greatly simplify an

angaysi s of the statistical properties of dithered systems;

for a discussion of this point, see [10].

It is interesting to note that a comparison of the

sinusoidal, sawtooth,, and Gaussian dithers has been carried

out experimentally [17] on a simple contactor (which is an

ampl itude-saturating .quantizer) system, with the result

that perfect linearization of the system response was

achieved by both the sawt.ooth and sinusoid, as one would

expect. On the other hand, a Gaussian dither which had

been. high-pass filtered produced less satisfactory results;

although this random dither did help to; arrest large-



amplitude limit-cycle oscillations, the system output

still showed a random jitter.

At the present time two periodic dithers, the sinusoid

and the sawtooth, appear to, be the most suitable dither

types for effectiig linearization: the sinusoid becaause

it is so easy to, generate and injecat, and the sawtooth

because it is un$que as a dither in being able to bring

about complete linea-rization even when its peak-t o-peak

amplitude is only one quant-um.

A.j Sinusoidal Dit he r

Supose that a sinusoidal ither d(t) is injected

so that

(1)i () =i vCt) + mnq gin, dt

where m is a dimefnsionless quantity giving the di ther

amplitude in quanta, and 2, 2 d = 2w/Td is the dither

radian frequency. Then the system output will approximate

the time average

Td
(-2) 0 ( lT)f o(t) dtqa ()q

0

for the situation in which the frequency speetrum of i t
q

lies in the centar of the passband of B relative too d

(for B bandpass), or is much nearer to, the origin (for B



low-pass)' than w(d; ii,e,j iq? is unattenuated relative

to, do,(t),. One can create such a situation by empIloying

sufficiently high dither frequencies. Strictly speaking,

the system output will then be proportional (rather than
equal) to oqa', but this circumstance has no bearing on

linearization, wIhich, is the problem at hand.

The plots of oqa vs I appearing in Fig. 3 are the

result of digital-computer simulation for the situation

depicted schematically in that figure. i n 'Table, I,

Oqa/q is given analytically for three ranges, of m. Th e

task of furnishing a 'complete characteristic of oqa vs i

for each value of m is simplified considerably by Virtue

of certain Droperties of the chatacteristic.

(1) eodilcit , Because the cjUantizer dharacteistid

itself is periodie with period q, we have

(3) oq+a(iq '+nq)o Ci ')+nqqaq

for all m, where n is an integer.

(2) Symmetry. Beeause d (t)= d (Td - t),, we have

(4) oqa( q ') = (n - 1)q - Oqa [(n - 1)q - iq '

for O,5q(n - 2) < i ' < 0.5q(n - 1) for all m, where n is
q

an integer.
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Tabl e I

SOME EXPRES'S IONS FOR o qIN CLOSED FORM FOR S INUSOIDAL DITHER.
q a

Def-initions: i '/q, +m

-n-

81= sin +~~ i ')/m], anU n

sin -c( I '),/Mn

Rantge' of m Range of s Condltion 0/q

O<m0.5 Ol<s<0.

O ~ 6e 05 .5 1 o 15 i o 05 0.5 8/7r

O m Q105 0.5 < s <15 i'-m>05 1

0.5 < < 1 0'.5 < 1 1 ni -m <- .5( 1 +7r

0.e5 < Q- 1 05 < s < 1.-5 1 i > Q 05! 0.5 B 8/Vr

1 rn<15 1< s<2 s 1.5 /7

15 <15 1 < 8 2 s> 1.5 0.5 (k+2+
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(3), Oddne$s. By letting n take on negative values,

it follows directly from property (,2) that

(,5) ~ oga (iq *i)1 = -o qa (-! )

for all m.

() Completeness, It follows from repeated

application of propert-ies (1) and (2) that, for all m,

o (i qI) is ceompletely specified if it is specified for

the interval 0 < i < O.5q.q

Properties (1) and (2) are evident in Fig. 3, where
the over-all qUantizer gain OQG -qa(iq') /iq' is seen to

approach uni ty as m increases from 0 to 5 in three
increments.

Of great importance to the engineer is the maximum

excursion from linearity,,

(6) MEL(m) JA ' - o (i '),1(6 q qa q, max

which is found for any given value of m by allowing i' to

vary freely. The smallest positive maximizing value

of i ' = im' lies in the range 0 < im' < 0.5q, becauseq qm! qm

of the symmetry property; i.e.,, we have

i'qm - Oqa,(iq m ')l = Iq - iqm' - 0qa(q " iqm')"



By means of computer programming, a plot of MEL vs, m

has been generated for i0 < m < 6 (Fig. 4).

B . Optimal Sinusoidal Dither

Use of Fig, 4 makes it possible to solve the

following practical design problems:

1(a) Economical co-nsiderations dictate that some upper

bound must be placed upon the quantizer's dynamic ratnge,

and consequently on m. What is the value of m = mopt

that minimizes MEL under the constraint that m < mm

(b) Specifications call for an upper bound on MEL.

,What is the smallest value of m = m for which ML < ELmaX?

It is apparent that, because the derivative d(mL)/

can be positive, in general we have mopt O mmax. Observe

that the maxima of MEL(m) (in addition to the One at m = o}

occur at m 0 15 + 0.5n, where integer n > 1, i.e., at

-m = 0.65, 1.15, 1.65, ,,. , The minima of MEL(m) occur

at m 0.45 + 0,5(n-l)j where n is a positive integer,

-i.e., the minima occur at m = 0.45, 0.95, 1.45,

Employing the above information, the designer proceeds

to solve problem (a) in the following fashion:

(1) Determine approximately the maximum swing of

1q'(t) if the quantizer were to be replaced by a pure gain

of unity.

(2) Comparing this swing to the bound on the quantizer's

operating range, obtain. the value of m(a lmax
(3), On Fig. 4, construct, the vertical line m =mmax
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,(4) Take as mIn. tha t value of m < mmnax which

minimizes MEL,

:(5) ROeplace (theoretically) the uni ty gain quantizer

by One having MEL = M EL:m and reatses()trbgEL rmop't

(4), until two cansecutive iterations, yield the same value

for m " Usually one iteration will suffite.opt

As an illustrative example,, suppose that the iq swing

for step (1) is -q < iq' < 0.9q and that the quantizer's

operating range is -l.5q < i. < l.5q. Then mmax = 0.6,

Mopt 0.45 and MEL m = 068q. If iteration yields

max Z 0.45, the desi~g is complete, end the ML has been

reduce-d to less than 1/7 of its undithered value (Go5q)

wi th t'he quantization grain unchanged.

The solution to problemn (b):, where 1E18 x is Spedified,

requires that the line IEL = M ax be constructed on

Figr 4. Proceeding along this line from left to right,

choose as mopt the value of m at the first intersectiob

with the MEL-vs-m curve. For example, if MEImax = 0,05q,

then m opt -095,

C. Sawtooth Dither

Gonsider now the sawtooth dither dAt), periodic

with period T , such that

(8) da(t) = mq (l - (2t/Td)] for 0 < t <



The oqavs-q characteristic tor e sawtooth

(Fig. 5) exhibi the properties Of periodicity, symetry,

oddnesS, and aompleteness ascribed above to the sinusoid.

Likewise the ,L-vs4-m characteris-ic (Fig. 6) can be

obtained for 0 < i ' 5q.S The sawtoorth, also commands
Am

additional properti.es:

(1) 'The sawtooth 'OQ0 G 0 A ([ the subscripts ((or )
denote that the dither used is sinusoidal (or s awtooth))

is unity With MELA = 0 for all m= 10.,5n, where n is a

positive integer. For a proof, see Appendix Ii

(2) For MEL / 0 and 0 < io' < 0.5q, the Oqa.vs-i'

plot is composed of two straight-line segments of different

s lope passing through (o, o) and (o.5q, 0.5q), respectively.

Therefore the point P at which they intersect,

(i q, i 'qmI + MEL), completely specifies the plot. To

find P for any m,. note that i' is the smallest positiveqm

value of i I which causes the range of o (t) to increaseq q
or decrease (whichever calls for the smallest iq') by

one quantum from its range for i' 0.
q

Consequently construction of the Oqaq-vs-'

characteristic is quick and simple-: For- any value of

m = m1 < 6, consult. Fig. 6 for the corresponding value

of MEL = MEL1 . Strike out the integral part of ml,

retaining the part R to the right of the decimal point.
If 0 < R < o.5, draw a straight line from the origin to

point P at. [(0 .5 -R)q, (0.5.- R)q -MEL 1 ]. Next draw a
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line from- P to the polint (o5q,.5q) If 0.5 -k R < 1.0,

locate point P at [(R - O.5),q, (R, -05)-q .+ ML 1] and

prorceed as, above.,

In Fig. 5, -the curves for mn= .2 and Mn = 1.25 have

corresponding MEL's, of' o,25q and 0.0o5q, respectively, and,

their -P points are located at i(o.'25q, 0) and (0.25q, 0%.2q),9

Acomparably simple tecihnique for the const~uctioi

ot the sinusoidal characterijstic is not available.

For 0 < m < 10.i5, we have OQGA = OQG 0, Within the
de ad band -,(0.5 -m,)q < I < (05 mq oeeWi th

0 <t in <05 and i(0.-5 - in)q <i '< (0.p 5 + in)q., we obtainqI 0QG~/ 0QG~ 0-5/n

For the sawtooth, If M lies in the rang e

Q.i5!(n M 1 < < 05n, whe re integer n > 1, then

iqin~~ 'r(.5nm)q for nodd andi ~m05n1I qm

for n even. Therefore by finding o (i MLi), settingqa q

= i 1' for the range of in in question, and settingq

d/dm [Q :(iq' in) -iqin 'J 0, the KEL. maximizing value

of m is found.

For example, for 0L.5 < m < 1.0 we get i OR-(i - 0,.5) q.

Consulting Table 2 and solving, we find that

(9.) d/dm nc Bqa iqm" in) - i I =# d/dni 1.5 -m - (o 5/n)Jq

for mn = l/'r2, whIch is the value of in at the maximum.



Tab1le2

SOME EXPRESSIONS, FOR oq lI CLOSED FORMFO SAWTOOH DITHER

qaq

Range of m IRange Oft I Conditoonq

I<<. m < 0.55

O ~in 0. 05 < s<1. i .5 5 (' + mn 0. 5)/(2mn

0O < 0.5 0.5 < s < 1.5 1 n> 0. 1

0.5 < rn < 1 0.5 (< L5 mn n~5i /t

0. <in< 05 < 8, < 1.-5 in1 n>-05(a + in 0.5)/(2mn)

10m 15 < rs<10.5

1 < <1.5 1.5 < 0 2 ________ ~ +~-15/(2,m)
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t, a s1~lmiar' tashi'on, we find that the maxima of MEL for

the ranges 1.o < im < 1.5 and 1.5, < m < 2.0 occur at

mV= 1 and m respectively. For our purposes we

can approximate by saying that the maxima of MELA 'occur
at m = 0, O.707, 1.225, 1.73, and at m = 0.25 + O.15,(n + 3),

where n is a positive integer.

D. Optimal Sawtooth Dither

A 'comparison of the plots for _L and MELA i(Figs. 4

and 6) shows that not only is the sawtooth capable of

perfect linearization, as has been mentioned, but that
the sequence SA of the maxima of MELA (SA = 0,5q, 0.085q,

O.O'q, O.03 5q, O028:q, ,..) converges to zero much more

rapidly than the sequence S of the maxima of MEL (S_
0.5q, o.17q, 0.1254, 0.105q, O.094q, ... ). Also, fo al

m, we have MELA (m) < MEL (m), the equality holding only

for 0 < m < 0.45. Therefore if the design procedure out-

lined for the sinusoidal dither is applied to the sawtooth

for a given m. > 0.45, then the sawtooth will be found

to yield a smaller MEL than the sinusoid. Similarly, if

the specifications call for a certain MEmax < o.068q =

MEL (m = 0.45), the design can be effected with a smaller

value of m if a sawtooth rather than a sinusoid is employed.

Even though theory shows the sawtooth to be clearly

superior to the sinusoid if values of max> o.45 are

permitted, practical considerations may obviate use of

the sawtooth. As was mentioned earlier, injection of



-24-

dither directly into, the quantizer may be physically

impossible; dither may have to be injetted togetfher wi th

the system inp ti Whereas ,d(t) suffers only attenuation

and phase shift as a result of operation A "(if A in Fig. 2

iS linear., so injected does not in, general retai n

its: sawtiooth fo&rm. Only by- performing. the oper-atian

A-inverse (if this is possible) on dA(t) prior to, its

injection ind ombination with the normal system, Input can

onie O Vereme this, problem. Note that Ammnver se is defined

as that operation on any time function, say h(t),, which,

when followed -y operation A results in the functliht)

it iS eviderit that sinusoidal dither remains important

fo other than histori-cal reasons.

4i$TMPATIN S$AWTOTHL- J) IT-1MR

in preceding portions of t he present discussion, he
normalized dither aplitude m, was sbjet to the constraint

the quantizer must not be driven into saturation. As

advantages a ee from employing dithers that are

not subject to this constraint (i.,e,, saturating dithers),

it is worthwhile to develop these properties numerically,

as we shall now do for the sawtooth dither.

Consider a quantizer that saturates at its kth (k = 1,

2, .. ) quanta level slo that Q = kq for all iqI > :(k - 05)q.
q q

Suppose that,, of the class of sawtooth dithers, we wish to

employ one that is theoretically capable of effecting

perfect linearization, i.e., one for which m = O,5n, where
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n is a positive integer. Theni the qua~ntizer acting in,

conjunction with, a low-pass or- band-pass, filtier exhibits

the following. Properties (see AppendiX II fox' their

()For nl = 1 (ie. m 0.) we, have oqa- 1

everywherein, the, line~arizted Interval i .q kq. Out'side

of this interval, we have, lo q,- kq., Let the quantizerts

dynaic gaih Q bG qai wheirever thirs derivative

exists. Hence for n = 1,,

(10) (a) QDG 1 f or Iiq' < kq,

11i) (b) 01DG =0, for 1i' > kXq

(2) Generalizing, f or any integer n s.atisf'ying

< <n < 2k, where n G. .5n, we have

(12) (a) Q]G = 1 for Ii <I k + 0. -5,(1- n)JIq

(13) (b) QDG = (n - 1)/n for [k + 0.5(1 - n)]q

iqI X E + 0.-5'(3 - n)]lq
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(4) QD = (n- 2)/n for .k + 0.5(3 - n)]q

lq ' (k + 0,5(5 - n)]q

(15) QDG, = /n for [k + O...5(n - 3)qj < k ,+ o..5(n - i]q,

'(16) QDG,= 0 for i "i > k + O.,5(n.- )]q

(3), Iet the maximum. excursion irom linearity when

iqt is, allowed to range froM zero to, the saturation edge,

where QDG becomes 0, be called, s iAe.,

EL~s(r = 0O5n) = lo (- ) -- i '[ , where the
qa q qmx

maximizing value of i i [k + 05(n- jqq - qm- 9 . [  O - -,-q ,
We find, for ay integer n satisfying I < n < 2k, that

MELs(m G 5, n) * O.5(n 1)q.

(4) We conclude from property (2) that the sensitive

interval G, i.e., the interval for which QDG 0 , can grow

only at the expense of the linear interval L (i.e., the

interval for which QPG = 1), because L + G = 4,kq = twice

the range which the quantizer output shows with no dither

present.

As a consequence of properties (3). and (i), the

engineer must compromise in the light of his particular

performance s-pecifications. He must decide whether to

design for () maximum L = 2kq = minimum G, and minimum



-27-

IIL 0, = 0 by choosinlg m = 0,5; (i) mfaximum G = (4k -!).q)

minimum L = q, and maximum MELA. (O,5n)' = (k -0.5q;

or (iii) intermediate valuels of L, , and MELAs (.if k > 1).

The nature of this designi. trade-offt can be seen in

Fig. 7, where o is plotted against positive i ' for
qa dit q

to0ur values ot m = 0.,n, and where the undithered

quantizer :output oq saturates at + 5q for all iq >+ l(k -i O.5)q

(i.e., k = 5):

(a)' For n =1 , m0.5, we have maximum L= lOq -

minimum G and ME L -(O.5). 0;

(b) For n = 10:, we have maximum G 19q, minimum L.- q

and maxirmum MELAS(05n) = EL5(5) q

(c) For n 2, we have L, = 9q, G = llq, and

MELs(l)' = 0,,,q; and

(d) For n = 5, we have L = 5q, G l.q, and

MELAs(2,5), = 2q.

It is apparent f om Fig. 7 t ha t linearity here is a

"currency:" that can be "spent"" to enlarge onels sensitive

"frontage" G.

There is no theoretical limit on how large

G (.and MELAs) can be made if one removes the condition

1 < n < 2k that has been imposed so as to make L > q.,

5, CONCLUSIONS

If the raw quantizer output signal undergoes either

a low-pass or a band-pass filtering, (as it often does

naturally) on its course to the system, output, it is



o ()=AERAED UANTIZER OUTPUT

NY

NJ

.0T

z_
0n

GO;~

Fi: 70



possible in theorly to -alter the equivalent over-all quantizer

gain OQG so that its' deviation from a pure gain of unity

is as small as is desired, if a high frequency dither, can

be injected,. For a sinusoida$ dither d, perfiect

linearization is appro'ached i- the limit as its normalized

zero-to-peak amplitude m becomes large. A sawtooth dither

d is capable, however, of effecting perfect linearization

for values of m which are integral multipiles of 1/2.

'The OQG characteristic for either d or dA is

completely specified if it is specified for nondither

quantizer inputs which range One half a quantum in a

amplitude,, because of the periodicity and symetry

properties that the characteristic exhibits. The sawto-oth

OQ G, OGbeing cOniPosed en~tirely of straight-lin e segets,

is easilY constructed, as is evident from the rules that

we have presented for it$ constructi..on

The maximum excursion from linearity _L(m), is

specified for any m by comparlng the OQG curve with the 45-

line and finding the supremum of the abs:olute value of the

difference between the two curves. It was found that, the

sinusoidal and sawtooth MEL(m), curves,,, ie., the ML.(m)

and MEL,(m) curves, and the extent of the corresponding

dead-band regions are identical if 0: < m< 0,.45; but in

the region 0.45 <'m < 0.5 the two. curves part company

because MEL-,(m) rises from its first minimum at m = 0.45

while MEL continues to descend to its, first minimum at
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n = 0. 5; ME14(O.45) = MELA(O. 4 5) = o.o68q and MEL (0.5) =

0o.105q but MELA,(:O.5) =0

Practical considerations place a bound on the maximum

value Which m Is permitted t'o take; call this mma x .

'Then for 0 < max ' 0,45.,, d and d A are equally effective

as linearizers. But for mma x > 0.45, dIA is preferable
because MELA < M . for m > 0.45. Similarly, if the

design calls for an MEL < 0,i068q then the sawtooth :Should

be uSed By emp'loying the, curves which have been

presented, a method for finding the optimal1 dither amplitude

:(for either d or dA) in the face of design constraints

has been proposed

There is an. advantage in employing a sawtooth if the

dither amplitude is subject to slow amplitude drifting

(e.g., because of ambient temperature Variations) as one

notes in the following example. Suppose that the design

specific-ations call for a reduction of MEL to one tenth

of its value without dither (i,,e.., from. 0.5q to 0.05q),

and that a sinusoidal dither has been decided upon because

a sinus.oidal signal generator is available. Then the

smallest amplitude range for which this is possible is

m = 0.95 + 1%. On the other hand, a low amplitude saw-

tooth dither with m = 0.5 + 10% will also meet the

specifications,. The advantages of employing the smaller

m with its greater tolerance should be app"arent.

We have also considered the use of sawtooth dithers
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with amplitudes so large as to drive the quantizetr into
saturation (it saturates at the + kth quanizatin levels)

:as a means of extending the sensitive range of quantizer

operation at the expense of incurring greater values of

MEL. It was shown that it is, possible to retain an interval

of unity OQG around the origin of length q while the

sensitive region of the quantizer is extended to

2P[k + O.5q ('2k - l)]iq. At the same time the MEL rises

to 0.5(2k - l)q4 The, OQG characteristic f'or varyLng

degrees of saturation was also deve-loped.



Appendix I

PROOF THAT TI .SAWTOOTH DITER IS A -PERFECT IMN-EARIZER
IF, i, n/2 WHIEMRE n IS A POSITIV INTEGER

Let in' I i'/q. Then it is hecessary to prove that
q

6qa qji only for o < it.' < 0,5, because of the symmetry

and periodicity properties that have been mentioned in

Section 3-A. For odd and even n, the maximum and minimum

values that o, (t) can take on for a finite time interval
q

with in' so, bounded are the following:

Parity of n MiMlmuI0 (t) Minimum o (t)

q q

even, Yq/2 nq/2

odd q(nj + 1)/2 -q(n 17

A. Even n. For n even, we have (2n + 1)/2 levels

Of o (t). Examine o (t) for the interval O < t < Tq -~qd
noting that the duration for which o remains at any level

remains constant as i ' is varied slowly f,r all levels
q

except, the extreme ones, the maximum and minimum. For. the
nonextreme levels, the interval is Td/n seconds. For the

nq/2 level, the interval is W!  (Td/n)'(0.5 - in') seconds.

For the nq/2 level, the inte-rval is W2 = Td/n- W1 =

(Td/n)(O.5 + in') seconds. Therefore we have

(17) oqa = (o.o5nq/T)(w,2 - Wl)

= (o.,_ 5nq/Td)(Td/n)(.05 + in' - 05 + in')

= qi' iq
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1B., Odd -n. For n; odd, vie also; haver (2n + 1)/2 levels,

,of 'o' (t)"i and the daration is again T /n, seconds Par all

leve ls except those at q,(,n + 1)/2 and - q,(n )/,2.i

Le t, WI dur-ation. of the, IoWest level and W2  dur a tion

of the highest leveli Then, wie haqve W1 +' d,bu

= , (T d/n)j(l - 1 n) Therefore we obtain W2  'Td in '/n'

(18) q qT){n~/2 [dn W 1 1. + [(n +)7]W}

Substitution Yields

0qa ~i' = L
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Appendix II

DERIVATION OF THE PROPERTIES ASCRIBED
TO SATURATIG SAWTOOTH DITHER

The bject of this appendix is, the derivation of

properties, (i) (2), and (3) which have been ascribed

to the saturating sawtooth dither in Sec. 4,

With regard to property (1), observe that it is a

special case of property (2) with n = 1

Property (2) is composed of two parts,. (a) and (b),

Which will now be derived::

(a) Quantizer saturation does n it occur :unless the

peak of iq satisfies iq + O.5nq > :(k + 0i,5)q

Then '(a) applies to nonsaturating values, of (as proven
in Appendix I), and the linearization is perfect,, s that

(bo) Examine 0 -(t), for the interval 0, < t <~ Cal
the interval of length q for which Eq. (15) applies

the saturating interval 1 = Sil, the nteval for which

Eq. (!+) app1ies SI2, and soQ on. There will be n I,

such intervals for which ODG ' 0, because only at the

lower edge of SIn do all values of iq(t) lie in the
saturation region; i.e., we have i (t) > (k + 0,5)'q.

For SIl , the minimum level of o (t) is (k - n + 1)q,

and it has a duration W= (T/n) [l (i + B)/q]

seconds, where B = Ek + O.5(n - l)1q. The maximum level

of oQ (t) is, of course, the saturation level kq, and it
q



has a duration off W, [1 + C(i '-B)'/q- seconds. The

duratioM off the6 levels, lying between these, two ektremes

do not chantge ffor, any saturatintg interval.4 Consequenltly

these levels can be ignored in solving, ffor

(20) QDG (n l)/noa~

-&TPd: [Ck(aW 2/6iq,') + :(k -n

For Q2)the mininmum level off o (t) is( n + 2)q, and
q

its duration Is

(21) W =Td/nEl ~-q'-B-)q]scn;

the maximtum level is again, kq, and its duration is

(22) W =T/n 2 (i'-B-q)/qJ seceonds.
2 Td q

Therefore we have

W) q/Td [-(W2 /iq + )(w1 q' 2-

For the Jth quantizing, interval .1 < JL < n, the minimum

level is (k -n + J)q andi its duration is,



W2~ W1  TdI/n [-Q ' B- ji 1)/q 4ec and

q -

The maximum level is qand its duration, is,

() w2 =T/n t'J + Qq $0 B -iq,,/qj s-ec. and,

aw /8 l/q.2 -q

Therefore We obtain

(26 DG T/n(q/T-)Eki/q -(k -n, +J)/q) - n Q.E*-D.

Property (1)follows directly f rom the fact that Q~G

decreases monotonically, with the re0sult tha th iegence

between the line o -i "and the o (i )v- Sqa q -- qaq q

characteristic Increases monotonically. The maximum

magnitude of thiz divergence, i.e., fM~EL, is obtained by

setting i 'equal to its greatest permissible value underq

the definition, i.e., iq [ k + 0.5,(,n 1 )q.
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Errata Sheet for RDM3271-PR

REMOVING TE NOISE PROM THE QUANTIZATION PROCESS
BY DIH NG: LINEARIZATON

0G. G0. Fuirman

1. Page 10, equation (2) Should read:

Td-

*qa -(O (lTafq(t) dt.

2. Page 15, 12th line from the bottom of the page should
read :

ocura m~0.5 .5,Where integer n > 1 i.,e., at

3. Page 35, seconrd line from the bottom of page, the
right sq-are bracket is not complete. The right
bracket Should be compl11eted n the expreso
Should read:

B Eo11k + 0.i,(n l)q

The followin is a list of captions for the fi-gures

Fig. 1 lie Periodic Quantzation - pe of Nonlinearity

Fig. 2 - Problem Formulation

Fig. 3 -Ove-all Quantizer Gain for Sinusoidal Dither

Fi. 4 Maximum Excursion from Linearity for Sinusoidal
Dither

Fi. 5- Over-all Quantizer Gain for Sawtooth Dither
Fig. 6- Maximum Ecusion from Linearity ior Sawtooth

Dither

Pig. 7- Over-all Quantizer Gain for a Saturating Sawtooth
Dither


